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Validation Studies:
Bias, Efficiency, and Exposure Assessment

Nilanjan Chatterjee and Sholom Wacholder

Measurement error is the bane of epidemiologic
studies of diet, behavior, and environmental
factors. Even molecular assays—whether for

simple genotypes or for complicated biochemistry—are
not immune. In this issue, Stürmer et al.1 make some
useful observations on methods to reduce or eliminate
the bias from measurement error. Herein, we discuss the
general problem of measurement error and comment on
the current state of epidemiologic methods to mitigate
its effect.

Errors in variables (the term used by statisticians)
lead to distorted estimates of effect and to underpowered
or biased tests. The impact of errors is well understood,
at least regarding the direction of the estimate, in a few
important special situations. However, measurement er-
ror can introduce unpredictable distortions in many re-
alistic settings.2,3

Case-control studies with exposure data or bio-
specimens collected retrospectively are particularly
vulnerable to poor measurement of exposure. Nondif-
ferential measurement error is often a consequence of
exposure information that is collected long after the
exposure occurs. Differential error can arise when
symptoms or treatment of disease affect a biomarker

(other than germ-line DNA) or, along with knowl-
edge of the presence of disease, influence response to
questionnaires.

Internal validation studies can be used to reduce the
impact of measurement error. An error-prone exposure
measurement Z is collected from everyone in the main
study. A more accurate but more expensive measure-
ment X is also available, in principle, for everybody.
However, owing to cost or practical considerations, X is
collected only on a validation sample, consisting of small
subsets of cases and controls selected randomly. Clearly,
the risk parameter associated with X could be estimated
unbiasedly but quite imprecisely with a complete case
estimator (CCE) that discards all the imperfect but in-
formative Z measurements from subjects not in the val-
idation sample. The regression calibration (RCE) and
semiparametric efficient estimators (SPE) exploit the im-
perfect measurements Z from individuals who were not
included in the validation sample to obtain a more
efficient estimate of the risk parameter.

What is the basic principle behind these more sophis-
ticated “bias correction” methods that use both sets of
measurements? The validation sample reveals the rela-
tion between Z and X. Based on this relation, a proba-
bilistic distribution of X can be inferred from Z for
subjects with unknown X. SPE and RCE use different
ways of predicting X from Z; they make different
tradeoffs between stronger assumptions about the struc-
ture of the error and greater reliance on the validation
data itself. RCE also requires an additional assumption
that the measurement error be small.

From the Division of Cancer Epidemiology and Genetics, National Cancer
Institute, Bethesda, MD.

Address correspondence to: Nilanjan Chatterjee, 6120 Executive Blvd, EPS
8038, Bethesda, MD 20892-7244; chattern@mail.nih.gov

Copyright © 2002 by Lippincott Williams & Wilkins, Inc.

DOI: 10.1097/01.EDE.0000022948.80077.AE

EPIDEMIOLOGY September 2002, Vol. 13 No. 5 COMMENTARIES 503



Understanding the basis of the nomenclature can
help one understand the distinction. The term regres-
sion calibration describes how Z is calibrated to X based
on the parametric regression model for X given Z; inci-
dentally, it also evokes the calibration of the regression
of interest by data from the validation study. In contrast,
SPE predicts the distribution of X given Z from the
validation study nonparametrically, that is, without im-
posing a parametric relation between X and Z. It is
deemed semiparametric because it involves one paramet-
ric and one nonparametric component: the parametric
component is the regression model for Y given X, and
the nonparametric component is the distribution of X
given Z. The method is called efficient because it is
defined as the most efficient among the class of all
semiparametric estimators that treat the distribution of
X given Z nonparametrically. In other words, SPE pre-
dicts the distribution of X given Z from the validation
study nonparametrically, whereas RCE requires a spe-
cific parametric assumption about the conditional distri-
bution of X given Z, such as the conditional mean of X
being linear in Z, or what Stürmer et al. call linear
measurement error.1

An analogy can be drawn with the use of a parametric
t-test or a nonparametric Wilcoxon rank-sum test when
testing whether the distributions of a variable are the
same in two groups. The t-test relies on the assumptions
that the variables are normally distributed with equal
variance in both groups; it is more efficient when the
assumptions hold, but can be quite misleading when
they are strongly violated. In contrast, the nonparamet-
ric procedure makes no distributional assumption; its
superior performance when the t-test assumptions are
violated compensates for its lower efficiency when the
assumptions hold. In bias correction, the precision of
RCE under the correctly specified error model contrasts
with the robustness of SPE against departures from the
model. The nonparametric aspect of SPE allows it to
capture more nuances of the relation between X and Z
than RCE. Assume, for example, that multidimensional
X is observed with nondifferential measurement error in
each component and that Z is the corresponding error-
prone variable. Even if X and the errors Z–X are not
normally distributed and each of the components of X
and Z–X are correlated with each other,2,3 semiparamet-
ric estimators remain valid. When the normality as-
sumption is correct and the relation between Z and X is
linear, however, SPE is less efficient than RCE because
RCE capitalizes on the imposed structure. Stürmer’s
simulation studies (Table 2) clearly show that for small
measurement error, the efficiency gain of RCE over SPE
can be substantial if the assumed linear measurement
error model holds, but the authors do not explore the
consequence of the violation of this assumption.1

Differential measurement error poses an additional
challenge. SPE, although far superior to RCE in the
typical nonparametric setting, may not be fully robust, as
it requires the investigator to specify the form of differ-
ential measurement error. Stürmer et al., for example,
considered a normal measurement error distribution
where the difference in distributions between cases and
controls is characterized either by a shift in the mean or
a change in the scale of the underlying normal distribu-
tion.1 Although Stürmer’s simulation experiments show
that SPE is unbiased under this form of differential
measurement error,1 SPE may not be robust when the
errors are not normally distributed. The complete case
estimator is fully robust to differential measurement er-
ror, as it relies only on the gold-standard measurements.

More often than not, X is an alloyed-gold standard,4

an imperfect approximation of a gold standard. In this

situation, the “bias correction” procedures estimate the
same regression that they would if X were used for
everyone in the study. Therefore, the measurement error
in X leads to residual bias in the estimate. When the
alloyed gold standard is an “unbiased” predictor of the
true gold-standard, both the CCE and SPE estimators
are attenuated in Stürmer’s simulations (Table 8).1 Here,
unbiased means that the average value of repeated mea-
surements of X will give the true gold standard for each
individual. This no-bias assumption, however, can easily
be violated in practice. For example, error correction
based on use of diaries for sun exposure or diet can
modify behavior through a kind of personal “Hawthorne
effect.”5 The task of scrupulously recording food intake
may in itself affect eating behavior during the diary
period so that the recorded information is unrepresen-
tative of usual diet beforehand or afterwards.

Many epidemiologists regard validation designs prin-
cipally as a way to correct bias from measurement error.

“Many epidemiologists regard
validation studies principally as a

way to correct bias from
measurement error. In

contrast,. . .[we] view validation
designs as tools for minimizing

the cost of a study with
fixed power. . .”
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In contrast, we usually take for granted the ability of
these methods to produce an unbiased estimate, at least
under idealized conditions. We view validation designs
as tools for minimizing the cost of a study with fixed
power or, equivalently, for maximizing the precision of
the estimate of the main study parameter with fixed cost.
We therefore consider it valuable to consider designs
with stratified random sampling (with strata defined
jointly by case-control status and error-prone exposure
measurements), which can often be substantially more
efficient than either simple random sampling or standard
case-control sampling.6–8 For example, oversampling
cases so that the numbers of cases and control in the
validation stage are equal is clearly a more efficient
strategy for CCE, and, not surprisingly, for RCE and SPE
as well, than the simple random sampling Stürmer et al.
considered. Sampling based on Z could further improve
the efficiency of the design. For example, if Z is at least
moderately correlated with X, oversampling extreme
values of Z yields greater numbers of extreme Xs and,
therefore, will be more informative for estimating a
slope. There need not be any bias attributable to strat-
ified sampling if appropriate statistical methods are used
in the analysis stage.

The validation design is a special case of “two-phase
stratified study designs,” which can provide cost savings
in many epidemiologic studies. The two phases are the
collection of a set of inexpensive covariates Z for all
subjects, followed by the collection of more expensive
covariates X at phase 2 on a smaller subsample of sub-
jects selected based on values of Z and case-control
status. More generally, two-phase designs can be used
profitably to collect information on an expensive expo-
sure of interest,9 confounder,6 or effect modifier10 on a
sample of subjects, with the sampling faction varying
according to the value of variables available for everyone
in the study. Even “old-fashioned” matching and con-
temporary countermatching11 can be seen as two-phase
strategies,9 because collection of exposure X depends on
the matching variables Z. In the class of two-phase
designs, the validation study is special in only one rather
trivial way: Z is not included in the risk model, because
it is assumed that there is no information about risk of
disease attributable to Z that is not contained in X.

So where are we now? The paper by Stürmer et al.
shows the promise of sophisticated statistical methods
for error correction.1 In general, semiparametric estima-
tors are more flexible and robust than RCE in the
presence of poorly understood error mechanisms. When
computation of a semiparametric efficient estimator is
overly complex, slightly less efficient but simpler semi-
parametric estimators based on pseudolikelihood meth-
ods12 can be attractive. Software is now available in
S-PLUS (MathSoft, Inc., Seattle)13 for various semipa-
rametric methods of the general two-phase data problem

(including validation studies for nondifferential mea-
surement error problems) using the logistic regression
model. Further research is needed to establish the ro-
bustness of the procedures in realistic settings, specifi-
cally for the differential measurement error and the
alloyed gold-standard problems, and for determining op-
timal designs for selecting a validation sample.

We believe that these statistical methods for “bias
correction” are ready to be used in case-control studies in
some limited situations. In particular, RCE can be an
efficient tool when measurement error is small and the
error structure is reasonably well understood. If the mea-
surement error is large or the error structure is not
known—as often is the case in practice—a semiparamet-
ric estimator can be used as a robust alternative, at least
when there is no important differential measurement
error. For additional economy, an efficient design using
stratified sampling should be considered as a way to
select the most informative subjects in the validation
sample. Evaluation of the performance and utility of
these procedures will require several applications in
studies with hard-nosed critiques of the validity of the
underlying assumptions.

Validation studies, whether or not designed for bias
correction, can be crucial to increasing the value of epide-
miologic studies. An instructional example is the rapid
progress in understanding the epidemiology of cervical neo-
plasia that followed the identification of polymerase chain
reaction as a sensitive and specific assay for infection with
oncogenic human papillomavirus14 through intra- and in-
terlaboratory studies of replicability.15 The best way to
reduce bias from measurement error is to improve tools for
measuring exposures including biological markers, environ-
mental samples, and questionnaires.
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